A show-stopping Gallo flashback
"Another way of doing it would be to find an animal
model not infected with a parallel virus to HHV-6
which can be infected by SIV [simian immunodeficiency
virus]. SIV can induce some immune deficiency not the
acute sort but there are monkeys in which SIV induces
nothing, there are monkeys in which some strains of
SIV induce an acute AIDS, and there are monkeys where
some strains of SIV induce a disease more similar to
the human disease, where it takes time. We used such a system. This is not published data.
With the SIV alone, there was a little immune
deficiency, and with the HHV-6 alone nothing, but with
the two together they got it. I think we have proven
the point with that rhesus virus and that we can
publish that soon. So, I believe human herpesvirus-6
is a factor in AIDS progression"
http://history.nih.gov/NIHInOwnWords/docs/gallo3_01.html
In the middle of the 1980s, we became aware that the lymphomas that were associated with HIV infection were perhaps one-third of the time EBV-positive. Epstein-Barr virus, as you know, can immortalize some B cells and, when you have EBV-positive lymphomas, generally they are the kind of lymphomas that, more or less... If they do not require EBV, EBV makes the probability of getting a lymphoma much greater, because the cell cannot die easily. It is immortalized. Other genetic events are needed to develop the lymphoma, but the immortalization of the cell is perhaps a key factor that makes it probable that it will be an EBV-containing cell that is the one that will become a lymphoma.
What about the two-thirds of lymphomas in HIV-infected persons that were not EBV-positive? We wondered if there were herpesviruses yet to be discovered. We looked in the B-cell lymphomas of patients with AIDS who were negative for EBV and we discovered the first new herpesvirus in 25 years, and the first herpesvirus of man that targeted predominantly the T cell.
We had a new herpesvirus, but it was not involved in the lymphoma, at least not as far as anybody knows, even today. We even misnamed it. We called it HBLV, because we found it in a B-cell lymphoma. Then we studied it more intensively and determined that it primarily infected T cells, not B cells, which was an unexpected finding. We learned that it killed T cells when it replicated. Then we learned that it infected natural killer cells and, when it did so, it made those cells attack other natural killer cells. We learned that it could infect the same cell as HIV and activate HIV expression. Next we learned that it infected CD8 cells and activated the gene for CD4, the only known biological agent I am aware of that activates the gene for CD4. Now, the CD4+/CD8+ cells could be targets for HIV.
It was at that stage we proposed that the herpesvirus might be a cofactor for progression of AIDS. It was then that I started to be careful of the use of these words and called it a catalyst for progression, that is, a nonessential cofactor, but something that makes disease progression go faster and also makes it more probable that immune deficiency will develop.
We put that idea out and it got a little bit of a reception by [Dr. Larry] Corey in Seattle, and by [Dr. Donald] Don Carrigan at Wisconsin. But then [Dr. Harold] Jaffe published a paper, the data of which we already had in hand. I think that paper by Jaffe and his colleagues at the CDC [Centers for Disease Control and Prevention] was not a sophisticated look at the problem. Namely, they said, Look, everybody has antibody, so how can it be a factor in progression? That is like saying a cytokine like TNF [tumor necrosis factor] is not important in disease pathogenesis because everybody has it. The question is, if 90 percent of the human population has it, they also have EBV, but EBV can cause Burkitt's lymphoma under certain settings. The question is, does it get activated in an immune-suppressed individual?
We put the problem aside for a while because we did not have a quantitative assay to measure the amount of herpesvirus; only this antibody that indicated a previous exposure to the virus, which everybody showed. We argued, however, when we presented it, that we needed to have a quantitative assay for virus in blood and the amount of human herpesvirus-6 [HHV-6] DNA in lymphocytes circulating around.
At this time we learned of Carrigan's work. He reported in a few clinical papers, that sometimes in immune-suppressed people, following transplantations, he saw an enormous amount of human herpesvirus-6 replication and that he believed it was responsible for some of the bone marrow abnormalities in such people. He showed a lot of virus in bone marrow. Second, he pointed out and emphasized that interstitial pneumonia is the cause of death in 10 percent of the deaths of HIV-positive people. No one knows the cause of that interstitial pneumonia, and he found the lungs of those who died loaded with human HHV-6. He presented at our laboratory meeting that he thought it was very likely that HHV-6 was the cause of those deaths.
Meanwhile, before this, Japanese workers had shown that HHV-6 was the cause of roseola infantum, also known as exanthem subitum, a disease of infants, with fever and rash, but usually with not much more.
So now what is new? I have discussed with my colleague [Dr.] Paolo Russo that the only way we are going to get any proof of this, or get stronger support, is if we get a specific inhibitor that does not inhibit HIV, inhibits HHV-6, and as far as we know does not inhibit anything else, is relatively non-toxic, and then show that patients do better rather than worse.
Another way of doing it would be to find an animal model not infected with a parallel virus to HHV-6 which can be infected by SIV [simian immunodeficiency virus]. SIV can induce some immune deficiency not the acute sort but there are monkeys in which SIV induces nothing, there are monkeys in which some strains of SIV induce an acute AIDS, and there are monkeys where some strains of SIV induce a disease more similar to the human disease, where it takes time.
We used such a system. This is not published data. With the SIV alone, there was a little immune deficiency, and with the HHV-6 alone nothing, but with the two together they got it. I think we have proven the point with that rhesus virus and that we can publish that soon. So, I believe human herpesvirus-6 is a factor in AIDS progression.
http://history.nih.gov/NIHInOwnWords/docs/gallo3_01.html
Konstance Knox, Ph.D., is an HHV-6 researcher who has just published a study with extraordinary implications for AIDS research and treatment strategies. Along with colleague Donald R. Carrigan, Ph.D., Knox demonstrated that 100 percent of HIV-infected patients studied (ten out of ten) had active Human Herpes Virus 6 Variant A infections in their lymph nodes early in the course of their disease. Seventy-five percent of these patients, in fact, had CD4 cell counts higher than 200 (the cut-off for receiving a diagnosis of AIDS), up to as high a CD4 count as 700. This finding led Knox and Carrigan to conclude that "active HHV-6 infections appear relatively early in the course of HIV disease and in vitro studies suggest that the A variant of HHV-6 is capable of breaking HIV latency, with the potential for helping to catalyze the progression of HIV infection to AIDS." This new study, in other words, presents data further implicating HHV-6, particularly Variant A (HHV-6A), as a cofactor (at the very least) in the development of AIDS. (The report is "Active HHV-6 Infection in the Lymph Nodes of HIV Infected Patients: In Vitro Evidence That HHV-6 Can Break HIV Latency," published in the Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology," April 1, 1996.) Knox, who has a Ph.D. in Experimental Pathology from the Medical College of Wisconsin, is currently conducting cancer research in the Immunotherapy Program at St. Luke's Medical Center in Milwaukee, Wisconsin. She spoke to the Native on the day following publication of the new study.
Gallo on HHV-6
Here's what Robert Gallo had to say about HHV-6 in an NIH interview in 1995:
Have we ever argued for a possible cofactor? Yes, with the qualification I just told you, that it is obvious that some things will promote progression and some things will inhibit progression. One of those things may be the genetics of me versus you. We can say dose is a factor that can lead to progression, or lack of it, and at a greater or lesser rate. But we have argued for certain herpesviruses as possibly being a factor in promoting AIDS progression. Several groups have argued for cytomegalovirus because it does do things and it does activate more HIV in some subtle settings.In the middle of the 1980s, we became aware that the lymphomas that were associated with HIV infection were perhaps one-third of the time EBV-positive. Epstein-Barr virus, as you know, can immortalize some B cells and, when you have EBV-positive lymphomas, generally they are the kind of lymphomas that, more or less... If they do not require EBV, EBV makes the probability of getting a lymphoma much greater, because the cell cannot die easily. It is immortalized. Other genetic events are needed to develop the lymphoma, but the immortalization of the cell is perhaps a key factor that makes it probable that it will be an EBV-containing cell that is the one that will become a lymphoma.
What about the two-thirds of lymphomas in HIV-infected persons that were not EBV-positive? We wondered if there were herpesviruses yet to be discovered. We looked in the B-cell lymphomas of patients with AIDS who were negative for EBV and we discovered the first new herpesvirus in 25 years, and the first herpesvirus of man that targeted predominantly the T cell.
We had a new herpesvirus, but it was not involved in the lymphoma, at least not as far as anybody knows, even today. We even misnamed it. We called it HBLV, because we found it in a B-cell lymphoma. Then we studied it more intensively and determined that it primarily infected T cells, not B cells, which was an unexpected finding. We learned that it killed T cells when it replicated. Then we learned that it infected natural killer cells and, when it did so, it made those cells attack other natural killer cells. We learned that it could infect the same cell as HIV and activate HIV expression. Next we learned that it infected CD8 cells and activated the gene for CD4, the only known biological agent I am aware of that activates the gene for CD4. Now, the CD4+/CD8+ cells could be targets for HIV.
It was at that stage we proposed that the herpesvirus might be a cofactor for progression of AIDS. It was then that I started to be careful of the use of these words and called it a catalyst for progression, that is, a nonessential cofactor, but something that makes disease progression go faster and also makes it more probable that immune deficiency will develop.
We put that idea out and it got a little bit of a reception by [Dr. Larry] Corey in Seattle, and by [Dr. Donald] Don Carrigan at Wisconsin. But then [Dr. Harold] Jaffe published a paper, the data of which we already had in hand. I think that paper by Jaffe and his colleagues at the CDC [Centers for Disease Control and Prevention] was not a sophisticated look at the problem. Namely, they said, Look, everybody has antibody, so how can it be a factor in progression? That is like saying a cytokine like TNF [tumor necrosis factor] is not important in disease pathogenesis because everybody has it. The question is, if 90 percent of the human population has it, they also have EBV, but EBV can cause Burkitt's lymphoma under certain settings. The question is, does it get activated in an immune-suppressed individual?
We put the problem aside for a while because we did not have a quantitative assay to measure the amount of herpesvirus; only this antibody that indicated a previous exposure to the virus, which everybody showed. We argued, however, when we presented it, that we needed to have a quantitative assay for virus in blood and the amount of human herpesvirus-6 [HHV-6] DNA in lymphocytes circulating around.
At this time we learned of Carrigan's work. He reported in a few clinical papers, that sometimes in immune-suppressed people, following transplantations, he saw an enormous amount of human herpesvirus-6 replication and that he believed it was responsible for some of the bone marrow abnormalities in such people. He showed a lot of virus in bone marrow. Second, he pointed out and emphasized that interstitial pneumonia is the cause of death in 10 percent of the deaths of HIV-positive people. No one knows the cause of that interstitial pneumonia, and he found the lungs of those who died loaded with human HHV-6. He presented at our laboratory meeting that he thought it was very likely that HHV-6 was the cause of those deaths.
Meanwhile, before this, Japanese workers had shown that HHV-6 was the cause of roseola infantum, also known as exanthem subitum, a disease of infants, with fever and rash, but usually with not much more.
So now what is new? I have discussed with my colleague [Dr.] Paolo Russo that the only way we are going to get any proof of this, or get stronger support, is if we get a specific inhibitor that does not inhibit HIV, inhibits HHV-6, and as far as we know does not inhibit anything else, is relatively non-toxic, and then show that patients do better rather than worse.
Another way of doing it would be to find an animal model not infected with a parallel virus to HHV-6 which can be infected by SIV [simian immunodeficiency virus]. SIV can induce some immune deficiency not the acute sort but there are monkeys in which SIV induces nothing, there are monkeys in which some strains of SIV induce an acute AIDS, and there are monkeys where some strains of SIV induce a disease more similar to the human disease, where it takes time.
We used such a system. This is not published data. With the SIV alone, there was a little immune deficiency, and with the HHV-6 alone nothing, but with the two together they got it. I think we have proven the point with that rhesus virus and that we can publish that soon. So, I believe human herpesvirus-6 is a factor in AIDS progression.
http://history.nih.gov/NIHInOwnWords/docs/gallo3_01.html
Dr. Konstance Knox explains why HHV-6 may be the key to dealing with AIDS.
by Neenyah Ostrom
New York Native, issue #678, April 15, 1996Konstance Knox, Ph.D., is an HHV-6 researcher who has just published a study with extraordinary implications for AIDS research and treatment strategies. Along with colleague Donald R. Carrigan, Ph.D., Knox demonstrated that 100 percent of HIV-infected patients studied (ten out of ten) had active Human Herpes Virus 6 Variant A infections in their lymph nodes early in the course of their disease. Seventy-five percent of these patients, in fact, had CD4 cell counts higher than 200 (the cut-off for receiving a diagnosis of AIDS), up to as high a CD4 count as 700. This finding led Knox and Carrigan to conclude that "active HHV-6 infections appear relatively early in the course of HIV disease and in vitro studies suggest that the A variant of HHV-6 is capable of breaking HIV latency, with the potential for helping to catalyze the progression of HIV infection to AIDS." This new study, in other words, presents data further implicating HHV-6, particularly Variant A (HHV-6A), as a cofactor (at the very least) in the development of AIDS. (The report is "Active HHV-6 Infection in the Lymph Nodes of HIV Infected Patients: In Vitro Evidence That HHV-6 Can Break HIV Latency," published in the Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology," April 1, 1996.) Knox, who has a Ph.D. in Experimental Pathology from the Medical College of Wisconsin, is currently conducting cancer research in the Immunotherapy Program at St. Luke's Medical Center in Milwaukee, Wisconsin. She spoke to the Native on the day following publication of the new study.